

Available online at www.sciencedirect.com

Journal of Sound and Vibration 267 (2003) 967-977

JOURNAL OF SOUND AND VIBRATION

www.elsevier.com/locate/jsvi

Letter to the Editor

Transverse vibrations of simply supported rectangular plates with two rectangular cutouts

D.R. Avalos^{a,*}, P.A.A. Laura^b

^a Department of Physics, School of Engineering, Universidad Nacional de Mar del Plata, Juan B. Justo 4302, Bahia Blanca 2031, B7604HGU Mar del Plata, Argentina ^b Department of Engineering, CONICET, Institute of Applied Mechanics, Universidad Nacional del Sur, Horneros 160, 8000 Bahía Blanca, Argentina

Received 22 January 2003; accepted 24 January 2003

1. Introduction

This note presents a series of numerical experiments performed on vibrating simply supported rectangular plates with two rectangular holes with free edges; see Figs. 1–3. The geometric configurations under study constitute triply connected domains and, apparently no exact solutions appear to be possible like the case of Laplace's equation when dealing with steady state diffusion-type problems.

From the point of view of plates executing transverse vibrations the problem is of direct technological interest since holes are practiced in plates or slabs in order to allow for the passage of ducts, conduits, cables, etc. and the designer must (or should) know the effect of these perturbations upon the dynamic characteristics of the structural element.

The present study is an extension of previous studies [1-3] and shows that the algorithmic procedure previously developed is efficient and accurate in the case of triply connected configurations.

The methodology of solution is quite simple and straightforward: it constitutes in the deduction from the energy functional corresponding to the full plate the subsidiary energy functional corresponding to the two holes. The Rayleigh–Ritz method is then applied. The approach yields reasonable results as long as the holes are placed sufficiently apart from each other and their sizes are moderate when compared with the plate of smaller dimension (less than 20%). Possibly the approach may be also applicable if more than two holes are practiced but one should be extremely careful with the validity of the physic–mathematical model. This also applies if the holes degenerate into slits: the approach will not be valid in this case.

^{*}Corresponding author. Fax: 54-223-481-0046.

E-mail addresses: davalos@mdp.edu.ar (D.R. Avalos), dtoinge@criba.edu.ar (P.A.A. Laura).

Fig. 1. Triply connected plate executing transverse vibrations.

Fig. 2. Case of holes displacing along the middle horizontal axis of the plate.

Fig. 3. Case of holes displacing along the plate diagonal.

Calculations are performed for isotropic, orthotropic and anisotropic plates. The lower four natural frequencies are determined. Excellent numerical stability is observed. As expected the frequencies are lower than those corresponding to a solid plate (no dynamic stiffening effect is observed for the situations under study).

2. Approximate analytical solution

For the rectangular plate under study, depicted in Fig. 1, the Rayleigh–Ritz variational approach requires minimization of the functional

$$J[W'] = U[W'] - T[W'],$$
(1)

968

Values of the first four frequency coefficients in the case of an isotropic rectangular plate of aspect ratio 2/3 for two different sizes of the cutouts when they are displaced along the horizontal middle line (Fig. 2) and along the diagonal (Fig. 3)

Size of the cutouts	Cutouts position	Ω_1	Ω_2	Ω_3	Ω_4
	Fig. 2(a)–(c)				
$a_1/a = 0.1 = b_1/b$	$x_1/a = 0.40; y_1/b = 0.50$	31.097	61.167	98.082	110.33
$a_2/a = 0.1 = b_2/b$	$x_2/a = 0.60; y_2/b = 0.50$				
	$x_1/a = 0.20; y_1/b = 0.50$	31.691	60.597	98.097	109.62
	$x_2/a = 0.80; y_2/b = 0.50$				
	$x_1/a = 0.05; y_1/b = 0.50$	32.035	61.449	98.082	110.23
	$x_2/a = 0.95; y_2/b = 0.50$				
	Fig. $2(a) - (c)$	20.041	(0.222	00.175	105.02
$a_1/a = 0.2 = b_1/b$	$x_1/a = 0.35; y_1/b = 0.50$	29.941	60.222	89.175	105.83
$a_2/a = 0.2 = b_2/b$	$x_2/a = 0.65; y_2/b = 0.50$	20.057	60 550	02 121	111 50
	$x_1/a = 0.20, y_1/b = 0.50$ $x_2/a = 0.80; y_2/b = 0.50$	50.957	00.330	95.121	111.39
	$x_2/a = 0.80, y_2/b = 0.50$	31 558	60.003	94 800	109.47
	$x_1/a = 0.10, y_1/b = 0.50$ $x_2/a = 0.90; y_2/b = 0.50$	51.556	00.005	94.000	107.47
	$x_2/a = 0.00, y_2/b = 0.00$				
	Fig. 3(a)–(c)				
$a_1/a = 0.1 = b_1/b$	$x_1/a = 0.40; y_1/b = 0.40$	31.207	61.152	97.199	110.24
$a_2/a = 0.1 = b_2/b$	$x_2/a = 0.60; y_2/b = 0.60$				
	$x_1/a = 0.20; y_1/b = 0.20$	31.730	61.167	97.503	110.31
	$x_2/a = 0.80; y_2/b = 0.80$				
	$x_1/a = 0.05; y_1/b = 0.05$	31.613	60.761	98.082	109.86
	$x_2/a = 0.95; y_2/b = 0.95$				
	Fig. 3(a)–(c)		<		
$a_1/a = 0.2 = b_1/b$	$x_1/a = 0.35; y_1/b = 0.35$	30.105	60.035	92.863	105.49
$a_2/a = 0.2 = b_2/b$	$x_2/a = 0.65; y_2/b = 0.65$	20.005	50.047	06.214	100.07
	$x_1/a = 0.20; y_1/b = 0.20$	30.605	59.847	96.214	108.87
	$x_2/a = 0.80; y_2/b = 0.80$	20.285	59 255	06 002	106 55
	$x_1/a = 0.10; y_1/b = 0.10$ $x_2/a = 0.90; y_2/b = 0.90$	30.283	38.333	90.005	100.33
	$x_2/a = 0.90; y_2/b = 0.90$				

where U[W'] is the maximum strain energy and T[W'] is the maximum kinetic energy for the (true) displacement amplitude W' of the plate.

As has been shown elsewhere, see for example Ref. [4], in the case of a plate of general anisotropy, that each term in Eq. (1) can be written

$$U[W'] = \frac{1}{2} \int \int \left\{ D_{11} \left(\frac{\partial^2 W'}{\partial x'^2} \right)^2 + 2D_{12} \frac{\partial^2 W'}{\partial x'^2} \frac{\partial^2 W'}{\partial y'^2} + D_{22} \left(\frac{\partial^2 W'}{\partial y'^2} \right)^2 + 4D_{66} \left(\frac{\partial^2 W'}{\partial x' \partial y'} \right)^2 + 4 \left[D_{16} \left(\frac{\partial^2 W'}{\partial x'^2} \right) + D_{26} \left(\frac{\partial^2 W'}{\partial y'^2} \right) \right] \left(\frac{\partial^2 W'}{\partial x' \partial y'} \right) \right\} dx' dy',$$
(2)

Size of the cutouts Cutouts position Ω_3 Ω_1 Ω_4 Ω_2 Fig. 2(a)–(c) $a_1/a = 0.1 = b_1/b$ $x_1/a = 0.40; y_1/b = 0.50$ 19.324 48.769 49.136 78.035 $a_2/a = 0.1 = b_2/b$ $x_2/a = 0.60; y_2/b = 0.50$ $x_1/a = 0.20; y_1/b = 0.50$ 19.550 48.265 48.946 78.621 $x_2/a = 0.80; y_2/b = 0.50$ $x_1/a = 0.05; y_1/b = 0.50$ 49.035 77.722 19.707 48.816 $x_2/a = 0.95; y_2/b = 0.50$ Fig. 2(a)–(c) $a_1/a = 0.2 = b_1/b$ $x_1/a = 0.35; y_1/b = 0.50$ 19.066 46.324 47.300 74.957 $a_2/a = 0.2 = b_2/b$ $x_2/a = 0.65; y_2/b = 0.50$ $x_1/a = 0.20; y_1/b = 0.50$ 19.121 47.009 75.402 47.778 $x_2/a = 0.80; y_2/b = 0.50$ $x_1/a = 0.10; y_1/b = 0.50$ 19.332 46.972 47.058 74.066 $x_2/a = 0.90; y_2/b = 0.50$ Fig. 3(a)–(c) $a_1/a = 0.1 = b_1/b$ $x_1/a = 0.40; y_1/b = 0.40$ 48.605 49.050 19.339 78.160 $a_2/a = 0.1 = b_2/b$ $x_2/a = 0.60; y_2/b = 0.60$ $x_1/a = 0.20; y_1/b = 0.20$ 48.660 49.160 78.074 19.527 $x_2/a = 0.80; y_2/b = 0.80$ $x_1/a = 0.05; y_1/b = 0.05$ 19.402 48.316 49.347 77.644 $x_2/a = 0.95; y_2/b = 0.95$ Fig. 3(a)–(c) $a_1/a = 0.2 = b_1/b$ $x_1/a = 0.35; y_1/b = 0.35$ 18.902 46.988 48.308 77.417 $a_2/a = 0.2 = b_2/b$ $x_2/a = 0.65; y_2/b = 0.65$ $x_1/a = 0.20; y_1/b = 0.20$ 18.863 47.980 48.511 79.667 $x_2/a = 0.80; y_2/b = 0.80$ $x_1/a = 0.10; y_1/b = 0.10$ 18.503 45.816 49.191 74.792 $x_2/a = 0.90; y_2/b = 0.90$

Values of the first four frequency coefficients in the case of an isotropic square plate for two different sizes of the cutouts when they are displaced along the horizontal middle line (Fig. 2) and along the diagonal (Fig. 3)

where the well-established Lekhnitskii's notation [4] for the flexural rigidities D_{ij} of the plate has been used, and

$$T[W'] = \frac{\rho \omega^2 h}{2} \iint W'^2 \,\mathrm{d}x' \,\mathrm{d}y'. \tag{3}$$

The integrals in expressions (2) and (3) extend over the actual area of the triply connected plate under study.

Taking the lengths of the sides of the rectangular plate to be a and b in the x and y directions respectively, and introducing the non-dimensional variables

$$W = W'/a; \quad x = x'/a; \quad y = y'/b \text{ and } r = b/a,$$
 (4)

Values of the first four frequency coefficients in the case of an isotropic rectangular plate of aspect ratio 3/2 for two different sizes of the cutouts when they are displaced along the horizontal middle line (Fig. 2) and along the diagonal (Fig. 3)

Size of the cutouts	Cutouts position	Ω_1	Ω_2	Ω_3	Ω_4
	Fig. 2(a)–(c)				
$a_1/a = 0.1 = b_1/b$	$x_1/a = 0.40; y_1/b = 0.50$	13.910	27.324	43.050	48.855
$a_2/a = 0.1 = b_2/b$	$x_2/a = 0.60; y_2/b = 0.50$	14.074	27 129	42 417	40.059
	$x_1/a = 0.20, y_1/b = 0.50$ $x_2/a = 0.80; y_2/b = 0.50$	14.074	27.128	42.417	49.038
	$x_2/a = 0.05$; $y_2/b = 0.05$ $x_1/a = 0.05$; $v_1/b = 0.50$	14.214	26.996	43.371	49.230
	$x_2/a = 0.95; y_2/b = 0.50$				
	Fig. 2(a)–(c)				
$a_1/a = 0.2 = b_1/b$	$x_1/a = 0.35; y_1/b = 0.50$	13.714	26.261	40.566	50.488
$a_2/a = 0.2 = b_2/b$	$x_2/a = 0.65; y_2/b = 0.50$	13 542	26.066	<i>A</i> 1 100	18 587
	$x_1/a = 0.20, y_1/b = 0.50$ $x_2/a = 0.80; y_2/b = 0.50$	15.542	20.000	41.199	40.302
	$x_1/a = 0.10; y_1/b = 0.50$	13.722	25.800	40.136	48.363
	$x_2/a = 0.90; y_2/b = 0.50$				
	Fig. 3(a)–(c)				
$a_1/a = 0.1 = b_1/b$	$x_1/a = 0.40; y_1/b = 0.40$	13.871	27.175	43.199	48.996
$a_2/a = 0.1 = b_2/b$	$x_2/a = 0.60; y_2/b = 0.60$				
	$x_1/a = 0.20; y_1/b = 0.20$	14.097	27.183	43.332	49.027
	$x_2/a = 0.80; y_2/b = 0.80$ $x_1/a = 0.05; y_1/b = 0.05$	14.050	27 003	13 580	18 837
	$x_1/a = 0.05, y_1/b = 0.05$ $x_2/a = 0.95; v_2/b = 0.95$	14.000	27.005	-5.507	40.052
	Fig. 3(a)–(c)				
$a_1/a = 0.2 = b_1/b$	$x_1/a = 0.35; y_1/b = 0.35$	13.378	26.683	41.269	46.886
$a_2/a = 0.2 = b_2/b$	$x_2/a = 0.65; y_2/b = 0.65$	12 (05	26.505	10 5 (1	40.000
	$x_1/a = 0.20; y_1/b = 0.20$	13.605	26.597	42.761	48.386
	$x_2/a = 0.80; y_2/b = 0.80$ $x_1/a = 0.10; y_1/b = 0.10$	13 457	25 933	42 667	47 355
	$x_1/a = 0.10$, $y_1/b = 0.10$ $x_2/a = 0.90$; $y_2/b = 0.90$	15.157	20.700	12.007	17.555
	-, , , , -,				

Eqs. (2) and (3) above can be recast in a non-dimensional form. One gets for the functional for the whole system of Fig. 1,

$$J_{nd} = \frac{2J}{rD_{11}}$$

$$= \iint \left\{ \left(\frac{\partial^2 W}{\partial x^2} \right)^2 + \frac{2d_{12}}{r^2} \frac{\partial^2 W}{\partial x^2} \frac{\partial^2 W}{\partial y^2} + \frac{d_{22}}{r^4} \left(\frac{\partial^2 W}{\partial y^2} \right)^2 + \frac{4d_{66}}{r^2} \left(\frac{\partial^2 W}{\partial x \partial y} \right)^2 + 4 \left[\frac{d_{16}}{r} \left(\frac{\partial^2 W}{\partial x^2} \right) + \frac{d_{26}}{r^3} \left(\frac{\partial^2 W}{\partial y^2} \right) \right] \left(\frac{\partial^2 W}{\partial x \partial y} \right) \right\} dx dy$$

$$- \Omega^2 \iint W^2 dx dy, \qquad (5)$$

Values of the first four frequency coefficients in the case of an orthotropic rectangular plate of aspect ratio 2/3 for two different sizes of the cutouts when they are displaced along the horizontal middle line (Fig. 2) and along the diagonal (Fig. 3)

Size of the cutouts	Cutouts position	Ω_1	Ω_2	Ω_3	Ω_4
	Fig. 2(a)–(c)				
$a_1/a = 0.1 = b_1/b$	$x_1/a = 0.40; y_1/b = 0.50$	30.019	63.746	79.128	114.80
$a_2/a = 0.1 = b_2/b$	$x_2/a = 0.60; y_2/b = 0.50$				
	$x_1/a = 0.20; y_1/b = 0.50$	30.144	63.691	78.652	114.60
	$x_2/a = 0.80; y_2/b = 0.50$				
	$x_1/a = 0.05; y_1/b = 0.50$	30.207	63.785	78.363	114.64
	$x_2/a = 0.95; y_2/b = 0.50$				
/ /s	Fig. 2(a)–(c)				
$a_1/a = 0.2 = b_1/b$	$x_1/a = 0.35; y_1/b = 0.50$	30.363	64.488	74.113	110.80
$a_2/a = 0.2 = b_2/b$	$x_2/a = 0.65; y_2/b = 0.50$	20.044	65 406	75.074	114 51
	$x_1/a = 0.20; y_1/b = 0.50$	30.066	65.496	75.074	114.51
	$x_2/a = 0.80; y_2/b = 0.50$	20.000	(2.40)	74.047	111.00
	$x_1/a = 0.10; y_1/b = 0.50$	29.988	63.496	/4.84/	111.08
	$x_2/a = 0.90; y_2/b = 0.50$				
	Fig. 3(a)–(c)				
$a_1/a = 0.1 = b_1/b$	$x_1/a = 0.40; y_1/b = 0.40$	30.074	63.660	78.855	114.69
$a_2/a = 0.1 = b_2/b$	$x_2/a = 0.60; y_2/b = 0.60$				
	$x_1/a = 0.20; y_1/b = 0.20$	29.863	63.683	79.011	114.72
	$x_2/a = 0.80; y_2/b = 0.80$				
	$x_1/a = 0.05; y_1/b = 0.05$	29.449	62.457	78.472	112.81
	$x_2/a = 0.95; y_2/b = 0.95$				
	Fig. 3(a)–(c)				
$a_1/a = 0.2 = b_1/b$	$x_1/a = 0.35; y_1/b = 0.35$	30.160	63.636	77.957	110.11
$a_2/a = 0.2 = b_2/b$	$x_2/a = 0.65; y_2/b = 0.65$		(a. 6 a .	=	
	$x_1/a = 0.20; y_1/b = 0.20$	28.785	63.027	78.339	112.88
	$x_2/a = 0.80; y_2/b = 0.80$	27 500	50 417		100.53
	$x_1/a = 0.10; y_1/b = 0.10$	27.589	59.417	/6./69	108.53
	$x_2/a = 0.90; y_2/b = 0.90$				

where, as usual, $\Omega_i = \sqrt{\rho h/D_{11}}\omega_i a^2$ is the non-dimensional frequency coefficient and $d_{ij} = D_{ij}/D_{11}$ for (i,j) = (1,2,6).

Expressing the displacement amplitude W(x, y) in terms of a double Fourier series,

$$W(x, y) \cong W_a(x, y) = \sum_{n=1}^{N} \sum_{m=1}^{M} b_{mn} \sin \frac{m\pi x}{a} \sin \frac{n\pi y}{b}$$
 (6)

and minimizing the governing functional with respect to the b_{mn} s, expression (5) yields an $(M \times N)$ homogeneous, linear system of equations in the b_{mn} s. A secular determinant in the natural frequency coefficients of the system results from the non-triviality condition. The present

Size of the cutouts Cutouts position Ω_1 Ω_4 Ω_2 Ω_3 Fig. 2(a)–(c) $a_1/a = 0.1 = b_1/b$ $x_1/a = 0.40; y_1/b = 0.50$ 19.894 43.292 50.800 78.605 $a_2/a = 0.1 = b_2/b$ $x_2/a = 0.60; y_2/b = 0.50$ $x_1/a = 0.20; y_1/b = 0.50$ 19.925 42.824 50.542 99.816 $x_2/a = 0.80; y_2/b = 0.50$ $x_1/a = 0.05; y_1/b = 0.50$ 42.527 50.941 19.964 78.042 $x_2/a = 0.95; y_2/b = 0.50$ Fig. 2(a)–(c) $a_1/a = 0.2 = b_1/b$ $x_1/a = 0.35; v_1/b = 0.50$ 20.292 41.324 50.207 76.183 $a_2/a = 0.2 = b_2/b$ $x_2/a = 0.65; y_2/b = 0.50$ $x_1/a = 0.20; y_1/b = 0.50$ 40.777 50.972 77.441 19.785 $x_2/a = 0.80; y_2/b = 0.50$ $x_1/a = 0.10; y_1/b = 0.50$ 19.699 40.105 49.527 74.214 $x_2/a = 0.90; y_2/b = 0.50$ Fig. 3(a)–(c) $a_1/a = 0.1 = b_1/b$ 19.894 43.285 $x_1/a = 0.40; y_1/b = 0.40$ 50.808 78.910 $a_2/a = 0.1 = b_2/b$ $x_2/a = 0.60; y_2/b = 0.60$ $x_1/a = 0.20; y_1/b = 0.20$ 43.308 50.894 79.175 19.738 $x_2/a = 0.80; y_2/b = 0.80$ $x_1/a = 0.05; y_1/b = 0.05$ 19.457 42.496 50.496 76.894 $x_2/a = 0.95; y_2/b = 0.95$ Fig. 3(a)–(c) $a_1/a = 0.2 = b_1/b$ $x_1/a = 0.35; y_1/b = 0.35$ 19.988 43.175 50.425 75.675 $a_2/a = 0.2 = b_2/b$ $x_2/a = 0.65; y_2/b = 0.65$ $x_1/a = 0.20; y_1/b = 0.20$ 19.027 42.894 50.464 77.753 $x_2/a = 0.80; y_2/b = 0.80$ $x_1/a = 0.10; y_1/b = 0.10$ 18.214 40.378 49.480 73.691 $x_2/a = 0.90; y_2/b = 0.90$

Values of the first four frequency coefficients in the case of an orthotropic square plate for two different sizes of the cutouts when they are displaced along the horizontal middle line (Fig. 2) and along the diagonal (Fig. 3)

study is concerned with the determination of the first four frequency coefficients, $\Omega_{1-}\Omega_{4}$, in the case of plates with two rectangular cutouts.

3. Numerical results

All calculations were performed for simply supported rectangular plates of uniform thickness and for three different types of constitutive relations, i.e., isotropic, orthotropic and general anisotropic plates. For simplicity, in all cases the cutouts have been chosen to be of the same aspect ratio as the original whole plate. For each situation, three tables are presented, each with a

Values of the first four frequency coefficients in the case of an orthotropic rectangular plate of aspect ratio 3/2 for two different sizes of the cutouts when they are displaced along the horizontal middle line (Fig. 2) and along the diagonal (Fig. 3)

Size of the cutouts	Cutouts position	Ω_1	Ω_2	Ω_3	Ω_4
	Fig. 2(a)–(c)				
$a_1/a = 0.1 = b_1/b$	$x_1/a = 0.40; y_1/b = 0.50$	14.628	26.394	43.527	44.246
$a_2/a = 0.1 = b_2/b$	$x_2/a = 0.60; y_2/b = 0.50$				
	$x_1/a = 0.20; y_1/b = 0.50$	14.707	26.035	59.089	65.316
	$x_2/a = 0.80; y_2/b = 0.50$				
	$x_1/a = 0.05; y_1/b = 0.50$	14.785	25.792	43.332	44.480
	$x_2/a = 0.95; y_2/b = 0.50$				
	Fig. $2(a) - (c)$	14 720	25 472	12 22 4	45 000
$a_1/a = 0.2 = b_1/b$	$x_1/a = 0.35; y_1/b = 0.50$	14.738	25.472	42.324	45.222
$a_2/a = 0.2 = b_2/b$	$x_2/a = 0.65; y_2/b = 0.50$	14 208	21 682	12 172	12 082
	$x_1/a = 0.20, y_1/b = 0.50$ $x_2/a = 0.80; y_2/b = 0.50$	14.308	24.065	42.472	43.062
	$x_2/a = 0.80, y_2/b = 0.50$ $x_1/a = 0.10; y_1/b = 0.50$	14 347	24 042	55 808	62 964
	$x_1/a = 0.10; y_1/b = 0.50$ $x_2/a = 0.90; y_2/b = 0.50$	11.517	21.012	55.000	02.901
	Fig. $3(a)$ –(c)				
$a_1/a = 0.1 = b_1/b$	$x_1/a = 0.40; v_1/b = 0.40$	14.605	26.402	43.378	44.347
$a_2/a = 0.1 = b_2/b$	$x_2/a = 0.60; y_2/b = 0.60$				
-, -,	$x_1/a = 0.20; y_1/b = 0.20$	14.644	26.386	43.316	44.488
	$x_2/a = 0.80; y_2/b = 0.80$				
	$x_1/a = 0.05; y_1/b = 0.05$	14.503	25.832	42.628	44.519
	$x_2/a = 0.95; y_2/b = 0.95$				
	Fig. 3(a)–(c)				
$a_1/a = 0.2 = b_1/b$	$x_1/a = 0.35; y_1/b = 0.35$	14.386	26.449	58.011	67.464
$a_2/a = 0.2 = b_2/b$	$x_2/a = 0.65; y_2/b = 0.65$				
	$x_1/a = 0.20; y_1/b = 0.20$	14.113	25.902	42.402	44.027
	$x_2/a = 0.80; y_2/b = 0.80$	12 707	24 400	41.027	12 502
	$x_1/a = 0.10; y_1/b = 0.10$	13.707	24.488	41.027	43.503
	$x_2/a = 0.90; y_2/b = 0.90$				

different value of the aspect ratio b/a: 2/3, 1 (square plate) and 3/2 to make a total of nine tables. In each table, in turn, two different values for the sizes of the cutouts are taken as they are placed along the middle horizontal line of the plate and along its diagonal.

Tables 1–3 depict values for the first four frequency coefficients for an isotropic rectangular plate with its Poisson coefficient being $\mu = 0.3$. The same scheme is repeated in Tables 4–6 for an orthotropic rectangular plate, where $\mu_2 = 0.3$; $D_2/D_1 = 1/2$ and $D_k/D_1 = 1/2$. Finally in Tables 7–9, results for a rectangular plate of general anisotropy are depicted. In this case calculations were carried out taken $D_{12}/D_{11} = 0.3$; $D_{22}/D_{11} = D_{66}/D_{11} = 1/2$ and $D_{16}/D_{11} = D_{26}/D_{11} = 1/3$.

For the double Fourier series, Eq. (6), N = M = 30 has been used, that is to say a secular determinant of order 900 was generated for all situations. Although satisfactory convergence is

Values of the first four frequency coefficients in the case of a rectangular plate of general anisotropy and aspect ratio 2/3 for two different sizes of the cutouts when they are displaced along the horizontal middle line (Fig. 2) and along the diagonal (Fig. 3)

Size of the cutouts	Cutouts position	Ω_1	Ω_2	Ω_3	Ω_4
	Fig. 2(a)–(c)				
$a_1/a = 0.1 = b_1/b$	$x_1/a = 0.40; y_1/b = 0.50$	26.902	54.105	76.433	90.792
$a_2/a = 0.1 = b_2/b$	$x_2/a = 0.60; y_2/b = 0.50$				
	$x_1/a = 0.20; y_1/b = 0.50$	26.988	54.050	76.097	90.902
	$x_2/a = 0.80; y_2/b = 0.50$				
	$x_1/a = 0.05; y_1/b = 0.50$	26.980	54.066	76.121	90.363
	$x_2/a = 0.95; y_2/b = 0.50$				
	Fig. $2(a) - (c)$	26.040	54 500	70.550	00.004
$a_1/a = 0.2 = b_1/b$	$x_1/a = 0.35; y_1/b = 0.50$	26.949	54.589	/0.550	88.894
$a_2/a = 0.2 = b_2/b$	$x_2/a = 0.65; y_2/b = 0.50$	26 571	54 714	72 260	80 621
	$x_1/a = 0.20, y_1/b = 0.50$	20.374	34./14	/5.209	89.021
	$x_2/a = 0.80, y_2/b = 0.50$	26 402	53 105	73 300	86 777
	$x_1/a = 0.10, y_1/b = 0.50$ $x_2/a = 0.90; y_2/b = 0.50$	20.402	55.105	75.500	00.777
	$x_2/u = 0.00, y_2/0 = 0.00$				
	Fig. $3(a) - (c)$				
$a_1/a = 0.1 = b_1/b$	$x_1/a = 0.40; y_1/b = 0.40$	27.035	54.042	75.800	90.816
$a_2/a = 0.1 = b_2/b$	$x_2/a = 0.60; y_2/b = 0.60$				
, , ,	$x_1/a = 0.20; y_1/b = 0.20$	27.042	54.019	76.472	91.082
	$x_2/a = 0.80; y_2/b = 0.80$				
	$x_1/a = 0.05; y_1/b = 0.05$	25.667	53.449	74.097	91.089
	$x_2/a = 0.95; y_2/b = 0.95$				
	Fig. 3(a)–(c)				
$a_1/a = 0.2 = b_1/b$	$x_1/a = 0.35; y_1/b = 0.35$	27.386	53.222	74.566	90.722
$a_2/a = 0.2 = b_2/b$	$x_2/a = 0.65; y_2/b = 0.65$				
	$x_1/a = 0.20; y_1/b = 0.20$	26.480	53.175	76.519	90.199
	$x_2/a = 0.80; y_2/b = 0.80$	24.406	52 204	71 720	00.525
	$x_1/a = 0.10; y_1/b = 0.10$	24.496	52.394	/1./38	90.535
	$x_2/a = 0.90; y_2/b = 0.90$				

achieved for N = M = 20, such high values of M and N have been used taking advantage of the speed of modern desktop computers. As usual, special care has been taken to manipulate such large determinants and 80 bits floating point variables (IEEE-standard temporary reals) have been used to satisfy accuracy requirements.

It is worth noting that computations are very stable and all frequency coefficients uniformly converge as the number of terms in the Fourier series is increased. Typically, the values for the frequency coefficients differ by less than 0.5% when M and N are increased from 20 to 30.

As a general conclusion one may say that the mathematical model seems to be quite realistic and accurate, within the realm of the classical theory of vibrating plates. Even though from a mathematical viewpoint it may be possible, in principle, to obtain correct results, it may not be

Values of the first four frequency coefficients in the case of a square plate of general anisotropy for two different sizes of the cutouts when they are displaced along the horizontal middle line (Fig. 2) and along the diagonal (Fig. 3)

Size of the cutouts	Cutouts position	Ω_1	Ω_2	Ω_3	Ω_4
	Fig. 2(a)–(c)				
$a_1/a = 0.1 = b_1/b$	$x_1/a = 0.40; y_1/b = 0.50$	18.082	36.660	49.972	60.941
$a_2/a = 0.1 = b_2/b$	$x_2/a = 0.60; y_2/b = 0.50$				
	$x_1/a = 0.20; y_1/b = 0.50$	18.082	36.425	49.566	60.480
	$x_2/a = 0.80; y_2/b = 0.50$	10.000	26.402	10.000	
	$x_1/a = 0.05; y_1/b = 0.50$	18.089	36.402	49.902	59.449
	$x_2/a = 0.95; y_2/b = 0.50$				
	Fig. $2(a) - (c)$	10.200	25 (2)	47 (21	(0.040
$a_1/a = 0.2 = b_1/b$	$x_1/a = 0.35; y_1/b = 0.50$	18.308	33.636	47.621	60.949
$a_2/a = 0.2 = b_2/b$	$x_2/a = 0.03, y_2/b = 0.50$	17 746	35 101	48 910	58 601
	$x_1/a = 0.20, y_1/b = 0.50$ $x_2/a = 0.80; y_2/b = 0.50$	17.740	55.171	40.910	56.091
	$x_2/a = 0.00, y_2/b = 0.50$ $x_1/a = 0.10; y_1/b = 0.50$	17 613	34 660	47 832	56 347
	$x_1/a = 0.90; y_2/b = 0.50$	17.012	51.000	17.052	50.517
	<i>M₂/u</i> 0.90, <i>y₂/0</i> 0.00				
	Fig. 3(a)–(c)				
$a_1/a = 0.1 = b_1/b$	$x_1/a = 0.40; y_1/b = 0.40$	18.128	36.644	49.816	60.863
$a_2/a = 0.1 = b_2/b$	$x_2/a = 0.60; y_2/b = 0.60$				
	$x_1/a = 0.20; y_1/b = 0.20$	18.097	36.652	50.230	60.808
	$x_2/a = 0.80; y_2/b = 0.80$				
	$x_1/a = 0.05; y_1/b = 0.05$	17.191	36.277	48.496	60.910
	$x_2/a = 0.95; y_2/b = 0.95$				
/ /I	Fig. 3(a)–(c)				· · · · -
$a_1/a = 0.2 = b_1/b$	$x_1/a = 0.35; y_1/b = 0.35$	18.402	35.949	49.503	60.847
$a_2/a = 0.2 = b_2/b$	$x_2/a = 0.65; y_2/b = 0.65$	17 (02	25.000	50 247	(0.025
	$x_1/a = 0.20; y_1/b = 0.20$	17.683	35.980	50.347	60.035
	$x_2/a = 0.80; y_2/b = 0.80$	16 271	25 590	46.010	60 200
	$x_1/a = 0.10; y_1/b = 0.10$ $x_2/a = 0.90; y_2/b = 0.90$	10.3/1	33.389	40.910	00.308
	$x_{2/}u = 0.90, y_{2/}v = 0.90$				

meaningful, from a structural mechanics viewpoint, to extend the procedure to a larger number of holes.

Acknowledgements

The present study was sponsored by CONICET Research and Development Program, by Secretaría General de Ciencia y Tecnología (Universidad Nacional de Mar del Plata and Universidad Nacional del Sur) and by a grant of Rocca Foundation (TECHINT) to the Institute of Applied Mechanics (UNS).

Values of the first four frequency coefficients in the case of a rectangular plate of general anisotropy and aspect ratio 3/2 for two different sizes of the cutouts when they are displaced along the horizontal middle line (Fig. 2) and along the diagonal (Fig. 3)

Size of the cutouts	Cutouts position	Ω_1	Ω_2	Ω_3	Ω_4
	Fig. 2(a)–(c)				
$a_1/a = 0.1 = b_1/b$	$x_1/a = 0.40; y_1/b = 0.50$	13.621	23.300	37.097	42.980
$a_2/a = 0.1 = b_2/b$	$x_2/a = 0.60; y_2/b = 0.50$				
	$x_1/a = 0.20; y_1/b = 0.50$	13.699	23.042	36.660	42.464
	$x_2/a = 0.80; y_2/b = 0.50$				
	$x_1/a = 0.05; y_1/b = 0.50$	13.769	22.910	36.175	43.214
	$x_2/a = 0.95; y_2/b = 0.50$				
	Fig. $2(a)-(c)$	12 (12	22 (12	28 202	20.022
$a_1/a = 0.2 = b_1/b$	$x_1/a = 0.35; y_1/b = 0.50$	13.613	22.613	38.292	39.832
$a_2/a = 0.2 = b_2/b$	$x_2/a = 0.03, y_2/b = 0.50$	13 175	21 033	35 621	11 238
	$x_1/a = 0.20, y_1/b = 0.50$ $x_2/a = 0.80; y_2/b = 0.50$	15.175	21.955	55.021	41.230
	$x_2/a = 0.00; y_2/b = 0.50$ $x_1/a = 0.10; y_1/b = 0.50$	13 199	21 441	34 605	40 113
	$x_2/a = 0.90; y_2/b = 0.50$	15.177	21.111	51.005	10.115
	Fig. $3(a) - (c)$	12 (12	22,202	26.041	42 010
$a_1/a = 0.1 = b_1/b$	$x_1/a = 0.40; y_1/b = 0.40$	13.613	23.292	36.941	43.019
$a_2/a = 0.1 = b_2/b$	$x_2/a = 0.00, y_2/b = 0.00$	13 738	23 371	36 580	13 136
	$x_1/u = 0.20, y_1/b = 0.20$ $x_2/a = 0.80; y_2/b = 0.80$	15.758	23.371	50.589	45.150
	$x_2/a = 0.05$; $y_2/b = 0.05$ $x_1/a = 0.05$; $v_1/b = 0.05$	13 292	22 558	36 417	43 058
	$x_2/a = 0.95; y_2/b = 0.95$	15.272	22.000	50.117	15.050
	Fig. $3(a)-(c)$				
$a_1/a = 0.2 = b_1/b$	$x_1/a = 0.35; y_1/b = 0.35$	13.433	23.105	36.308	41.074
$a_2/a = 0.2 = b_2/b$	$x_2/a = 0.65; y_2/b = 0.65$				
	$x_1/a = 0.20; y_1/b = 0.20$	13.316	22.894	35.574	42.636
	$x_2/a = 0.80; y_2/b = 0.80$				
	$x_1/a = 0.10; y_1/b = 0.10$	12.714	21.816	35.246	41.722
	$x_2/a = 0.90; y_2/b = 0.90$				

References

- [1] P.A.A. Laura, E. Romanelli, R.E. Rossi, Transverse vibrations of simply supported rectangular plates with rectangular cutouts, Journal of Sound and Vibration 202 (1997) 275–283.
- [2] P.A.A. Laura, D.R. Avalos, H.A. Larrondo, R.E. Rossi, Numerical experiments on the Rayleigh–Ritz method when applied to doubly connected plates in the case of free edge holes, Ocean Engineering 25 (1998) 385–389.
- [3] D.R. Avalos, H.A. Larrondo, P.A.A. Laura, Analysis of vibrating rectangular anisotropic plates with free-edge holes, Journal of Sound and Vibration 222 (1999) 691–695.
- [4] S.G. Lekhnitskii, Anisotropic Plates, Gordon and Breach, New York, 1968 (translated from the second Russian edition).